翻訳と辞書 |
Formally étale morphism : ウィキペディア英語版 | Formally étale morphism In commutative algebra and algebraic geometry, a morphism is called formally étale if has a lifting property that is analogous to being a local diffeomorphism. == Formally étale homomorphisms of rings == Let ''A'' be a topological ring, and let ''B'' be a topological ''A''-algebra. ''B'' is formally étale if for all discrete ''A''-algebras ''C'', all nilpotent ideals ''J'' of ''C'', and all continuous ''A''-homomorphisms , there exists a unique continuous ''A''-algebra map such that , where is the canonical projection.〔EGA 0IV, Définition 19.10.2.〕 Formally étale is equivalent to formally smooth plus formally unramified.〔EGA 0IV, Définition 19.10.2.〕
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Formally étale morphism」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|